Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Clin. transl. oncol. (Print) ; 26(1): 231-238, jan. 2024.
Artigo em Inglês | IBECS | ID: ibc-229161

RESUMO

Objectives Among the most promising antibody formats in terms of inhibiting carcinogenesis are single-stranded variable fragments, whose targeted binding to the Fzd7 receptor has been proven effective at suppressing tumorigenesis. In this study, we investigated the effectiveness of an anti-Fzd7 antibody fragment against both tumor growth and metastasis of breast cancer cells. Methods To develop anti-Fzd7 antibodies, bioinformatics approaches were used and the antibodies were expressed recombinantly in E. coli BL21 (DE3). The expression of anti-Fzd7 fragments was verified by Western blotting. Analysis of the antibody's binding capacity to Fzd7 was conducted by flow cytometry. Cell death and apoptosis were assessed by MTT and Annexin V/PI assays. The transwell migration and invasion assays, as well as the scratch method, were used to evaluate cell motility and invasiveness. Results The anti-Fzd7 antibody was expressed successfully as a single band of 31 kDa. It could bind to 21.5% of MDA-MB-231 cells, as opposed to only 0.54% of SKBR-3 cells as negative control. According to MTT assay, induced apoptosis was 73.7% in MDA-MB-231 cells, compared with 29.5% in SKBR-3 cells. Also, the antibody exerted a significant inhibitory effect of 76% and 58% on migration and invasion of MDA-MB-231 cells, respectively. Conclusion The recombinantly developed anti-Fzd7 scFv of this study could exhibit significant antiproliferative and antimigratory properties, along with a high apoptosis-inducing potential, making it suitable for the immunotherapy of triple negative breast cancer (AU)


Assuntos
Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias de Mama Triplo Negativas/patologia , Far-Western Blotting , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células
2.
Clin Transl Oncol ; 26(1): 231-238, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37310573

RESUMO

OBJECTIVES: Among the most promising antibody formats in terms of inhibiting carcinogenesis are single-stranded variable fragments, whose targeted binding to the Fzd7 receptor has been proven effective at suppressing tumorigenesis. In this study, we investigated the effectiveness of an anti-Fzd7 antibody fragment against both tumor growth and metastasis of breast cancer cells. METHODS: To develop anti-Fzd7 antibodies, bioinformatics approaches were used and the antibodies were expressed recombinantly in E. coli BL21 (DE3). The expression of anti-Fzd7 fragments was verified by Western blotting. Analysis of the antibody's binding capacity to Fzd7 was conducted by flow cytometry. Cell death and apoptosis were assessed by MTT and Annexin V/PI assays. The transwell migration and invasion assays, as well as the scratch method, were used to evaluate cell motility and invasiveness. RESULTS: The anti-Fzd7 antibody was expressed successfully as a single band of 31 kDa. It could bind to 21.5% of MDA-MB-231 cells, as opposed to only 0.54% of SKBR-3 cells as negative control. According to MTT assay, induced apoptosis was 73.7% in MDA-MB-231 cells, compared with 29.5% in SKBR-3 cells. Also, the antibody exerted a significant inhibitory effect of 76% and 58% on migration and invasion of MDA-MB-231 cells, respectively. CONCLUSION: The recombinantly developed anti-Fzd7 scFv of this study could exhibit significant antiproliferative and antimigratory properties, along with a high apoptosis-inducing potential, making it suitable for the immunotherapy of triple negative breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Escherichia coli , Western Blotting , Apoptose , Proliferação de Células , Movimento Celular
3.
Tissue Cell ; 74: 101717, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34973574

RESUMO

Tissue Engineering is a branch of regenerative medical technology which helps replace damaged tissue using appropriate scaffolding, living cells, and growth factors. Using tissue engineering products can be a promising method for treating skin lesions such as wounds and deep burns. The interaction and interconnection of cells within the bio-culture medium or within a three-dimensional scaffold provides the conditions for tissue regeneration and subsequent healing of skin wounds. Tissue engineering in the field of dermatology has evolved over time from a single application of skin cells or biopolymer scaffolds to the use of cell and scaffold combinations for the treatment, repair, and closure of acute and chronic skin wounds. It has evolved. This technology has reached a point where most products are accepted, and the body rejects a small number, which strengthens the tissue engineering market. In this article, we aimed to review and study the market of this field by reviewing various articles on tissue engineering in the field of dermatology. Tissue-engineered skin substitutes are future options for wound healing and tissue regeneration strategies.


Assuntos
Materiais Biocompatíveis/química , Queimaduras , Pele/metabolismo , Engenharia Tecidual , Tecidos Suporte/química , Cicatrização , Queimaduras/metabolismo , Queimaduras/terapia , Dermatologia , Humanos
4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-672624

RESUMO

Objective:To determine lactic acid bacteria’s capability to enhance the process of binding and isolating aflatoxin B1 and to utilize such lactic acid bacteria as a food supplement or probiotic products for preventing absorption of aflatoxin B1 in human and animal bodies. Methods: In the present research, the bacteria were isolated from five different sources. For surveying the capability of the bacteria in isolating aflatoxin B1, ELISA method was implemented, and for identifying the resultant strains through 16S rRNA sequencing method, universal primers were applied. Results: Among the strains which were isolated, two strains of Lactobacillus pentosus and Lactobacillus beveris exhibited the capability of absorbing and isolating aflatoxin B1 by respectively absorbing and discharging 17.4%and 34.7%of the aforementioned toxin existing in the experiment solution. Conclusions:Strains of Lactobacillus pentosus and Lactobacillus beveris were isolated from human feces and local milk samples, respectively. And both strains has the ability to isolate or bind with aflatoxin B1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...